Integrated Wheel/Rail Characterization through Advanced Monitoring and Analytics – an Overview

Antonio Cabrera – Assistant Chief Officer, Track Engineering, MTA-NYCT

Eric Magel – Principal Research Officer, National Research Council, Canada

RAIL TRANSIT SEMINAR . MAY 2, 2016

Outline

- Automated track inspection pilot
- Wheel/rail analytics project
 - team, technologies
 - objectives
 - analytics

RAIL TRANSIT SEMINAR . MAY 2, 2016

NYCT's Track Geometry Car - TGC4

FTA Office of Research Project NY-26-7112

Demonstration of Machine Vision Assisted Automated Track Inspection Pilot

RAIL TRANSIT SEMINAR . MAY 2, 2016

Rail Profile and Rail Wear

RAIL TRANSIT SEMINAR . MAY 2, 2016

5

Demonstration of Machine Vision Assisted Automated Track Inspection Pilot

- FTA Office of Research Project NY-26-7112 Granted to NYCT \$500 K on March 2012
- FTA Objectives:
 - Improve right-of-way safety of Track Inspectors through advanced track inspection techniques limiting the Inspectors' exposure on live tracks
 - Enhance the quality of the track inspections and reporting of defects
- Use of NYCT's TGC4, already equipped with Rail Top View, Gauge Side Rail View and Rightof-Way Video Systems, coupled with the other existing measuring systems, was found to be ideally positioned to accomplish the research objectives.
- Plasser American Corp. (manufacturer of the TGC4 and its measuring systems) agreed to be a partner to this Project.
- Project was performed in four Phases, starting in April 2012.

RAIL TRANSIT SEMINAR . MAY 2, 2016

7

Automated Visual Track Inspections -Summary

- \odot Inspection from vehicle (TGC4)
- Assure safety of track inspectors
- High-speed video cameras with good lighting provide for higher quality inspections
- Permanent objective record of inspection
- Defects found can be correlated with geometry or other defects
- \odot No degradation of on-time train performance

RAIL TRANSIT SEMINAR . MAY 2, 2016

Flushing Line At A Glance

- 27.5 Miles of Track
- 22 Stations
 - 34th Street-Hudson Yards opened in September, 2015
- Average Daily Ridership:
 - Weekday = 525,000
 - Saturday = 350,000
 - Sunday = 300,000

9

7 line (tied with the 6 line) has the most frequency of service in the entire system.

27 Trains per hour in each direction during Weekday Peak

RAIL TRANSIT SEMINAR . MAY 2, 2016

W/R Analytics project

- leverage NYCT/FRA Automated Track Inspection Research efforts.
- address concepts to enhance Operational Safety and strengthen the Resiliency of Transit Rail Systems.

RAIL TRANSIT SEMINAR . MAY 2, 2016

Approach

- SOA, automated, machine based
- wheel, track and truck data
- characterize and perform automated data collection and analytics
 - safety, resiliency + economics

RAIL TRANSIT SEMINAR . MAY 2, 2016

13

KLD WheelScan Automated Wheel Profile Measurement

- Being installed at Corona Yard
- Will capture, measure, store and report the condition of the entire Flushing Line R188 Fleet wheels
- Providing a web interface for access to data and TrainBase tools as required by participants
- Enabling categorization of fleet wheel wear patterns for input to wheel/rail analytics

RAIL TRANSIT SEMINAR . MAY 2, 2016

15

WheelScan to be installed at Corona Yard

WRI 2016

RAIL TRANSIT SEMINAR . MAY 2, 2016

Near 111th Street station

TRANSIT SEMINAR . MAY 2, 2016 RAIL

17

ISI – L/V Measurement System

- Remote Data System installed in 3rd Rail environment
 - Acquires lateral and vertical forces for each passing train
 - Characterizes vehicle
 performance: steering, wheel
 climb, effect of wheel profile,
 friction management, etc.
- Data is automatically transferred to KLD's central data warehouse

RAIL TRANSIT SEMINAR . MAY 2, 2016

WID - TBOGI Bogie Geometry Measurement System

- Measures the tracking behavior of bogies. Identify bogies with steering issues.
 - Operates in 3rd rail environment.
 - Measures the AOA and TP of each passing wheelset, and more...
 - Data pushed to TBOGI-DB web database and central data warehouse.

RAIL TRANSIT SEMINAR . MAY 2, 2016

WRI 2016

DCC – Data Collection Car

- instrumented wheel sets, accelerometers, acoustic recording equipment and propulsion energy recording equipment
- Part of an 11 car consist

WRI 2016

AIL TRANSIT SEMINAR . MAY 2, 2016

DTB – Instrumentation of Train Consist

- Design/develop/integrate data acquisition system for Research Consist and Data Collection Car (DCC)
- Measure propulsion energy consumption of Research Consist
- Measure vibration and acoustics on DCC in vicinity of Instrumented Wheel Set (IWS)
- Determine train location utilizing GPS aided Inertial Measurement Unit (IMU)
- Correlate acquired data to train location and time

RAIL TRANSIT SEMINAR . MAY 2, 2016

21

NRC Instrumented Wheelsets

- Regular wheelset instrumented with strain gauges and turned into dynamic load cells
- Gives accurate measurements of wheel/rail contact forces in all three axes
- Characterizes <u>track</u> performance: steering, wheel climb, effect of rail profile, friction management, etc.

RAIL TRANSIT SEMINAR . MAY 2, 2016

Plasser American – Ec Analytics

Objectives

- Decision Making
- Operational Safety
- System Resiliency
- Post Event System Service Recovery
- Condition based maintenance
- Optimized Propulsion Energy

RAIL TRANSIT SEMINAR . MAY 2, 2016

Decision Making

- wheel profile
- rail profiles
- friction management practices
- track maintenance prioritization
- train speeds, super-elevation

RAIL TRANSIT SEMINAR . MAY 2, 2016

Operational Safety

- Slow speed derailments
 - lateral forces
 - wheel unloading
- hunting, poor ride quality
- equipment failure

RAIL TRANSIT SEMINAR . MAY 2, 2016

System Resiliency

- asset condition monitoring and documentation
 - facilitate risk management
 - accelerate recovery/repair prioritization and speed a system's safe return to service

RAIL TRANSIT SEMINAR . MAY 2, 2016

Condition-based maintenance

- Wheel retruing
- Rail grinding (including reprofiling)
- Track geometry
- Vehicles (wheels/axles/trucks)

AIL TRANSIT SEMINAR . MAY 2, 2016

Optimized Propulsion Energy

- measure against
 - wheel profiles
 - rail profiles
 - curvature
 - friction conditions

RAIL TRANSIT SEMINAR . MAY 2, 2016

Improve Customer Service and **Customer Experience**

- 1. Reduce Wheel/Rail Noise
- 2. Improve vehicle ride characteristics (wheels, track and trucks)
- 3. Improve Vehicle Safety / system resiliency
- 4. Improving availability, avoid unplanned

maintenance

30

WHEEL/RAIL ANALYTICS

RAIL TRANSIT SEMINAR . MAY 2, 2016

Safety, comfort and economic parameters

- Lateral and vertical forces
- Wheel unloading
- Accelerations
- Wheel/rail noise
- Wheel angle of attack and lateral position
- Wheel and rail profiles
- Wheel/rail contact position

RAIL TRANSIT SEMINAR . MAY 2, 2016

- L/V force ratio
- Contact Stress
- High Rail Conformality
- Rolling Radius Difference

WRI 2016

• Effective Conicity

Timeline

- Phase 1 (18 months): Instrumentation of vehicles and track and collection of "as-is" (baseline) vehicle and track data and performance.
- Phase 2 (2 months): Develop and optimize analytics capability of the system.
- Phase 3 (4 months):In-track demonstrations of improved performance.

RAIL TRANSIT SEMINAR . MAY 2, 2016

34

Next Years

 all technologies functional Phase 1 **WRI** baseline performance data 2017? findings from early analytics Phase 2 **WRI** One system change Phase 3 2018? implemented and validated **WRI** 2016 RANSIT SEMINAR . MAY 2, 2016 35

THANK YOU!

Antonio Cabrera: Antonio.Cabrera@nyct.com

Eric Magel: Eric.Magel@nrc.ca

RAIL TRANSIT SEMINAR . MAY 2, 2016

